Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Am J Trop Med Hyg ; 109(1): 182-190, 2023 07 05.
Article in English | MEDLINE | ID: covidwho-20243341

ABSTRACT

Ultraviolet (UV) radiation systems, commonly used to disinfect surfaces, drinking water, and air, stem from historical practice to use sunlight to disinfect household items after contagious illness. Currently, it is still recommended in viral outbreak contexts such as COVID-19, Ebola, and Marburg to expose soft surfaces to sunlight after washing with detergent or disinfecting with chlorine. However, sunlight that reaches the Earth's surface is in the UVA/UVB wavelengths, whereas UV disinfection systems typically rely on biocidal UVC. Our goal was to fill the evidence gap on the efficacy of sunlight disinfection on surface materials common in low-resource healthcare settings by seeding four surfaces (stainless steel, nitrile, tarp, cloth) with three microorganisms (viral surrogate bacteriophages Phi6 and MS2 and Escherichia coli bacteria), with and without soil load, and exposing to three sunlight conditions (full sun, partial sun, cloudy). We conducted 144 tests in triplicate and found: solar radiation averaged 737 W/m2 (SD = 333), 519 W/m2 (SD = 65), and 149 W/m2 (SD = 24) for full sun, partial sun, and cloudy conditions; significantly more surfaces averaged ≥ 4 log10 reduction value (LRV) for Phi6 than MS2 and E. coli (P < 0.001) after full sun exposure, and no samples achieved ≥ 4 LRV for partial sun or cloudy conditions. On the basis of our results, we recommend no change to current protocols of disinfecting materials first with a 0.5% chlorine solution then moving to sunlight to dry. Additional field-based research is recommended to understand sunlight disinfection efficacy against pathogenic organisms on healthcare relevant surfaces during actual outbreak contexts.


Subject(s)
COVID-19 , Water Purification , Humans , Sunlight , Disinfection/methods , Escherichia coli , Chlorine , Ultraviolet Rays , Water Purification/methods
2.
Water Res ; 235: 119927, 2023 May 15.
Article in English | MEDLINE | ID: covidwho-2286181

ABSTRACT

Ambroxol hydrochloride (AMB) and bromhexine hydrochloride (BRO) are classic expectorants and bronchosecretolytic pharmaceuticals. In 2022, both AMB and BRO were recommended by medical emergency department of China to alleviate cough and expectoration for symptoms caused by COVID-19. The reaction characteristics and mechanism of AMB/BRO with chlorine disinfectant in the disinfection process were investigated in this study. The reaction of chlorine with AMB/BRO were well described by a second-order kinetics model, first-order in both AMB/BRO and chlorine. The second order rate reaction constant of AMB and BRO with chlorine at pH 7.0 were 1.15 × 102 M-1s-1 and 2.03 × 102 M-1s-1, respectively. During chlorination, a new class of aromatic nitrogenous disinfection by-products (DBPs) including 2-chloro-4, 6-dibromoaniline and 2, 4, 6-tribromoaniline were identified as the intermediate aromatic DBPs by gas chromatography-mass spectrometry. The effect of chlorine dosage, pH, and contact time on the formation of 2-chloro-4, 6-dibromoaniline and 2, 4, 6-tribromoaniline were evaluated. In addition, it was found that bromine in AMB/BRO were vital bromine source to greatly promote the formation of classic brominated DBPs, with the highest Br-THMs yields of 23.8% and 37.8%, respectively. This study inspired that bromine in brominated organic compounds may be an important bromine source of brominated DBPs.


Subject(s)
Ambroxol , Bromhexine , COVID-19 , Disinfectants , Water Pollutants, Chemical , Water Purification , Humans , Disinfection/methods , Halogenation , Expectorants , Bromine/chemistry , Chlorine/chemistry , Water Purification/methods , Disinfectants/analysis , Halogens , Chlorides , Water Pollutants, Chemical/chemistry
3.
Int J Environ Res Public Health ; 20(4)2023 Feb 06.
Article in English | MEDLINE | ID: covidwho-2232597

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has spread across the globe since the end of 2019, posing significant challenges for global medical facilities and human health. Treatment of hospital wastewater is vitally important under this special circumstance. However, there is a shortage of studies on the sustainable wastewater treatment processes utilized by hospitals. Based on a review of the research trends regarding hospital wastewater treatment in the past three years of the COVID-19 outbreak, this review overviews the existing hospital wastewater treatment processes. It is clear that activated sludge processes (ASPs) and the use of membrane bioreactors (MBRs) are the major and effective treatment techniques applied to hospital wastewater. Advanced technology (such as Fenton oxidation, electrocoagulation, etc.) has also achieved good results, but the use of such technology remains small scale for the moment and poses some side effects, including increased cost. More interestingly, this review reveals the increased use of constructed wetlands (CWs) as an eco-solution for hospital wastewater treatment and then focuses in slightly more detail on examining the roles and mechanisms of CWs' components with respect to purifying hospital wastewater and compares their removal efficiency with other treatment processes. It is believed that a multi-stage CW system with various intensifications or CWs incorporated with other treatment processes constitute an effective, sustainable solution for hospital wastewater treatment in order to cope with the post-pandemic era.


Subject(s)
COVID-19 , Water Purification , Humans , Wastewater , Waste Disposal, Fluid/methods , Pandemics , SARS-CoV-2 , Hospitals , Water Purification/methods , Wetlands
4.
Environ Sci Pollut Res Int ; 30(9): 24737-24741, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2174830

ABSTRACT

The overuse of disinfection during the COVID-19 pandemic leads to an emerging "health versus environment" dilemma that humans have to face. Irresponsible and unnecessary disinfection should be avoided, while comprehensive evaluation of the health and environmental impacts of different disinfectants is urgently needed. From this discussion, we reach a tentative conclusion that hydrogen peroxide is a green disinfectant. Its on-demand production enables a circular economy model to solve the storage issues. Water, oxygen, and electrons are the only feedstock to generate H2O2. Upon completion of disinfection, H2O2 is rapidly converted back into water and oxygen. This model adopts several principles of green chemistry to ensure overall sustainability along the three stages of its whole life cycle, i.e., production, disinfection, and decomposition. Physical methods, particularly UV irradiation, also provide sustainable disinfection with minimal health and environmental impacts.


Subject(s)
COVID-19 , Disinfectants , Water Purification , Humans , Disinfection/methods , Hydrogen Peroxide/chemistry , Pandemics , Water Purification/methods , Disinfectants/chemistry , Water , Oxygen
5.
Chemosphere ; 314: 137632, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2165148

ABSTRACT

The COVID-19 outbreak has raised concerns about the efficacy of the disinfection process followed in water treatment plants in preventing the spread of viruses. Ultraviolet (UV) and chlorine multi-barrier disinfection processes are commonly used in water treatment plants; however, their effects on virus inactivation are still unclear. In this study, the effects of different disinfection processes (i.e., UV, free chlorine, and their combination) on waterborne viruses were analyzed using bacteriophage surrogates (i.e., MS2 and PR772) as alternative indicators. The results showed that the inactivation rates of PR772 by either UV or free chlorine disinfection were higher than those of MS2. PR772 was approximately 1.5 times more sensitive to UV disinfection and 8.4 times more sensitive to chlorine disinfection than MS2. Sequential UV-chlorine disinfection had a synergistic effect on virus inactivation, which was enhanced by an increase in the UV dose. As compared with single free chlorine disinfection, UV irradiation at 40 mJ cm-2 enhanced MS2 and PR772 inactivation significantly with a 2.7-fold (MS2) and a 1.7-fold (PR772) increase in the inactivation rate constants on subsequent chlorination in phosphate buffered saline. The synergistic effect was also observed in real wastewater samples, in which the MS2 inactivation rate increased 1.4-fold on subsequent chlorination following UV irradiation at 40 mJ cm-2. The mechanism of the synergistic effect of sequential UV-chlorine disinfection was determined via sodium dodecyl sulfate-polyacrylamide gel electrophoresis, using MS2 as an indicator. The results showed that the synergistic effect was due to damage to MS2 surface proteins caused by previous UV disinfection, which enhanced the sensitivity of MS2 to chlorination. This study provides a feasible approach for the efficient inactivation of viruses in water supply and drainage.


Subject(s)
Bacteriophages , COVID-19 , Water Purification , Humans , Disinfection/methods , Chlorine/pharmacology , Virus Inactivation , Bacteriophages/radiation effects , Water Purification/methods , Ultraviolet Rays
6.
PLoS One ; 17(10): e0275482, 2022.
Article in English | MEDLINE | ID: covidwho-2065138

ABSTRACT

The persistence of high consequence public health pathogens in a wastewater treatment system can significantly impact worker safety, as well as the public and downstream water bodies, particularly if the system is forced to shut down the treatment processes. This study utilizes organism viability to compare the persistence of three pathogen surrogates in wastewater using a pilot-scale activated sludge treatment (AST) system, operated to mimic treatment processes of large-scale plants. Bacillus globigii spores, surrogate for Bacillus anthracis, persisted in the AST system for at least a 50-day observation period leading to a possible steady condition far beyond the solid retention time for sludge particles. MS2 bacteriophage, surrogate for Poliovirus and other non-enveloped enteric viruses, was observed for up to 35 days after introduction, which largely and expectedly correlated to the measured solid retention time. Phi-6 bacteriophage, a surrogate for Ebola virus and other enveloped viruses, was detected for no more than 4 days after introduction, even though the AST system was operated to provide three times slower solids removal than for the other surrogates. This suggests Phi-6 is subject to inactivation under AST conditions rather than physical removal. These results may suggest similar persistence for the surrogated pathogens, leading to appropriate consequence management actions.


Subject(s)
Sewage , Water Purification , Bacteria , Levivirus , Sewage/microbiology , Wastewater , Water , Water Purification/methods
7.
Sci Total Environ ; 850: 157851, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2036502

ABSTRACT

The rapid spread of coronavirus disease 2019 has increased the consumption of some antiviral drugs, wherein these are discharged into wastewater, posing risks to the ecosystem and human health. Therefore, efforts are being made for the development of advanced oxidation processes (AOPs) to remediate water containing these pharmaceuticals. Here, the toxicity evolution of the antiviral drug ribavirin (RBV) was systematically investigated during its degradation via the UV/TiO2/H2O2 advanced oxidation process. Under optimal conditions, RBV was almost completely eliminated within 20 min, although the mineralization rate was inadequate. Zebrafish embryo testing revealed that the ecotoxicity of the treated RBV solutions increased at some stages and decreased as the reaction time increased, which may be attributed to the formation and decomposition of various transformation products (TPs). Liquid chromatography-mass spectrometry analysis along with density functional theory calculations helped identify possible toxicity increase-causing TPs, and quantitative structure activity relationship prediction revealed that most TPs exhibit higher toxicity than the parent compound. The findings of this study suggest that, in addition to the removal rate of organics, the potential ecotoxicity of treated effluents should also be considered when AOPs are applied in wastewater treatment.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Water Purification , Animals , Antiviral Agents/analysis , Antiviral Agents/toxicity , Ecosystem , Humans , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Pharmaceutical Preparations , Ribavirin/toxicity , Ultraviolet Rays , Wastewater/chemistry , Water/analysis , Water Pollutants, Chemical/analysis , Water Purification/methods , Zebrafish
8.
Water Res ; 223: 119021, 2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-2004603

ABSTRACT

Due to the Covid-19 pandemic, the worldwide biocides application has been increased, which will eventually result in enhanced residuals in treated wastewater. At the same time, chlorine disinfection of secondary effluents and hospital wastewaters has been intensified. With respect to predicted elevated exposure in wastewater, the chlorination kinetics, transformation pathways and toxicity evolution were investigated in this study for two typical isothiazolinone biocides, methyl-isothiazolinone (MIT) and chloro-methyl-isothiazolinone (CMIT). Second-order rate constants of 0.13 M-1·s-1, 1.95 × 105 M-1·s-1 and 5.14 × 105 M-1·s-1 were determined for the reaction of MIT with HOCl, Cl2O and Cl2, respectively, while reactivity of CMIT was around 1-2 orders of magnitude lower. While chlorination of isothiazolinone biocides at pH 7.1 was dominated by Cl2O-oxidation, acidic pH and elevated Cl- concentration favored free active chlorine (FAC) speciation into Cl2 and increased overall isothiazolinone removal. Regardless of the dominant FAC species, the elimination of MIT and CMIT resulted in an immediate loss of acute toxicity under all experimental conditions, which was attributed to a preferential attack at the S-atom resulting in subsequent formation of sulfoxides and sulfones and eventually an S-elimination. However, chlorination of isothiazolinone biocides in secondary effluent only achieved <10% elimination at typical disinfection chlorine exposure 200 mg·L-1·min, but was predicted to be remarkably increased by acidizing solution to pH 5.5. Alternative measures might be needed to minimize the discharge of these toxic chemicals into the aquatic environment.


Subject(s)
COVID-19 , Disinfectants , Water Pollutants, Chemical , Water Purification , Chlorine , Disinfectants/toxicity , Halogenation , Halogens , Humans , Hydrogen-Ion Concentration , Kinetics , Pandemics , Sulfones , Sulfoxides , Thiazoles , Wastewater , Water Pollutants, Chemical/analysis , Water Purification/methods
9.
Environ Res ; 214(Pt 4): 114057, 2022 11.
Article in English | MEDLINE | ID: covidwho-1996149

ABSTRACT

Since the COVID-19 outbreak has started in late 2019, SARS-CoV-2 has been widely detected in human stools and in urban wastewater. No infectious SARS-CoV-2 particles have been detected in raw wastewater until now, but it has been reported occasionally in human stools. This has raised questions on the fate of SARS-CoV-2 during wastewater treatment and notably in its end-product, wastewater treatment sludge, which is classically valorized by land spreading for agricultural amendment. In the present work, we focused on SARS-CoV-2 stability in wastewater treatment sludge, either during storage (4 °C, room temperature) or thermophilic anaerobic digestion (50 °C). Anaerobic digestion is one of the possible processes for sludge valorization. Experiments were conducted in laboratory pilots; SARS-CoV-2 detection was based on RT-quantitative PCR or RT-digital droplet PCR. In addition to SARS-CoV-2, Bovine Coronavirus (BCoV) particles were used as surrogate virus. The RNA from SARS-CoV-2 particles, inactivated or not, was close to the detection limit but stable in wastewater treatment sludge, over the whole duration of the assays at 4 °C (55 days) and at ambient temperature (∼20 °C, 25 days). By contrast, the RNA levels of BCoV and inactivated SARS-CoV-2 particles decreased rapidly during the thermophilic anaerobic digestion of wastewater treatment sludge lasting for 5 days, with final levels that were close to the detection limit. Although the particles' infectivity was not assessed, these results suggest that thermophilic anaerobic digestion is a suitable process for sludge sanitation, consistent with previous knowledge on other coronaviruses.


Subject(s)
COVID-19 , Water Purification , Anaerobiosis , Animals , COVID-19/epidemiology , Cattle , Humans , RNA , SARS-CoV-2/genetics , Sewage , Wastewater , Water Purification/methods
10.
Environ Sci Pollut Res Int ; 29(45): 67604-67640, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1982293

ABSTRACT

This review summarizes research data on the pharmaceutical drugs used to treat the novel SARS-CoV-2 virus, their characteristics, environmental impacts, and the advanced oxidation processes (AOP) applied to remove them. A literature survey was conducted using the electronic databases Science Direct, Scopus, Taylor & Francis, Google Scholar, PubMed, and Springer. This complete research includes and discusses relevant studies that involve the introduction, pharmaceutical drugs used in the SARS-CoV-2 pandemic: chemical characteristics and environmental impact, advanced oxidation process (AOP), future trends and discussion, and conclusions. The results show a full approach in the versatility of AOPs as a promising solution to minimize the environmental impact associated with these compounds by the fact that they offer different ways for hydroxyl radical production. Moreover, this article focuses on introducing the fundamentals of each AOP, the main parameters involved, and the concomitance with other sources and modifications over the years. Photocatalysis, sonochemical technologies, electro-oxidation, photolysis, Fenton reaction, ozone, and sulfate radical AOP have been used to mineralize SARS-CoV-2 pharmaceutical compounds, and the efficiencies are greater than 65%. According to the results, photocatalysis is the main technology currently applied to remove these pharmaceuticals. This process has garnered attention because solar energy can be directly utilized; however, low photocatalytic efficiencies and high costs in large-scale practical applications limit its use. Furthermore, pharmaceuticals in the environment are diverse and complex. Finally, the review also provides ideas for further research needs and major concerns.


Subject(s)
COVID-19 , Ozone , Water Pollutants, Chemical , Water Purification , Humans , Hydrogen Peroxide/chemistry , Hydroxyl Radical/chemistry , Oxidation-Reduction , Ozone/chemistry , Pharmaceutical Preparations , SARS-CoV-2 , Sunlight , Wastewater/chemistry , Water , Water Pollutants, Chemical/analysis , Water Purification/methods
11.
Int J Environ Res Public Health ; 19(15)2022 08 05.
Article in English | MEDLINE | ID: covidwho-1979222

ABSTRACT

With the increased incidence of infectious disease outbreaks in recent years such as the COVID-19 pandemic, related research is being conducted on the need to prevent their spread; it is also necessary to develop more general physical-chemical control methods to manage them. Consequently, research has been carried out on light-emitting diodes (LEDs) as an effective means of light sterilization. In this study, the sterilization effects on four types of representative bacteria and mold that occur indoors, Bacillus subtilis, Escherichia coli, Penicillium chrysogenum, and Cladosporium cladosporidides, were confirmed using LED modules (with wavelengths of 275, 370, 385, and 405 nm). Additionally, power consumption was compared by calculating the time required for 99.9% sterilization of each microorganism. The results showed that the sterilization effect was high, in the order 275, 370, 385, and 405 nm. The sterilization effects at 385 and 405 nm were observed to be similar. Furthermore, when comparing the power consumption required for 99.9% sterilization of each microorganism, the 275 nm LED module required significantly less power than those of other wavelengths. However, at 405 nm, the power consumption required for 99.9% sterilization was less than that at 370 nm; that is, it was more efficient and similar to or less than that at 385 nm. Additionally, because 405 nm can be applied as general lighting, it was considered to have wider applicability and utility compared with UV wavelengths. Consequently, it should be possible to respond to infectious diseases in the environment using LEDs with visible light wavelengths.


Subject(s)
COVID-19 , Water Purification , COVID-19/epidemiology , Disinfection/methods , Escherichia coli , Humans , Pandemics , Ultraviolet Rays , Water Purification/methods
12.
Sensors (Basel) ; 22(13)2022 Jun 27.
Article in English | MEDLINE | ID: covidwho-1934197

ABSTRACT

Nowadays, the disinfection of classrooms, shopping malls, and offices has become an important part of our lives. One of the most effective disinfection methods is ultraviolet (UV) radiation. To ensure the disinfection device has the required wavelength spectrum, we need to measure it with dedicated equipment. Thus, in this work, we present the development of a UV spectrum detector capable of identifying UV wavelength spectrums, with a wide range of probes and the ability to transmit data to a PC for later evaluation of the results. The device was developed with four UV sensors: one for UV-A, one for UV-B, one for UV-C, and one with a wide range of detection of UVA, with a built-in transimpedance amplifier. An Arduino Nano development board processes all the acquired data. We developed a custom light source containing seven UV LEDs with different central wavelengths to calibrate the device. For easy visualization of the results, custom PC software was developed in the Processing programming medium. For the two pieces of electronics-the UV detector and calibration device-3D-printed housings were created to be ergonomic for the end-user. From the price point of view, this device is affordable compared to what we can find on the market.


Subject(s)
Water Purification , Disinfection/methods , Electronics , Light , Ultraviolet Rays , Water Purification/methods
13.
Environ Int ; 167: 107389, 2022 09.
Article in English | MEDLINE | ID: covidwho-1914334

ABSTRACT

Chlorination disinfection has been widely used to kill the pathogenic microorganisms in wastewater sludge during the special Covid-19 period, but sludge chlorination might cause the generation of harmful disinfection byproducts (DBPs). In this work, the transformation of extracellular polymeric substance (EPS) and mechanisms of Cl-DBPs generation during sludge disinfection by sodium hypochlorite (NaClO) were investigated using multispectral analysis in combination with Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The microorganism Escherichia coli (E. coli) was effectively inactivated by active chlorine generated from NaClO. However, a high diversity of Cl-DBPs were produced with the addition of NaClO into sludge, causing the increase of acute toxicity on Q67 luminous bacteria of chlorinated EPS. A variety of N-containing molecular formulas were produced after chlorination, but N-containing DBPs were not detected, which might be the indicative of the dissociation of -NH2 groups after Cl-DBPs generated. Additionally, the release of N-containing compounds was increased in alkaline environment caused by NaClO addition, resulted in more Cl-DBPs generation via nucleophilic substitutions. Whereas, less N-compounds and Cl-DBPs were detected after EPS chlorination under acidic environment, leading to lower cell cytotoxicity. Therefore, N-containing compounds of lignin derivatives in sludge were the major Cl-DBPs precursors, and acidic environment could control the release of N-compounds by eliminating the dissociation of functional groups in lignin derivatives, consequently reducing the generation and cytotoxicity of Cl-DBPs. This study highlights the importance to control the alkalinity of sludge to reduce Cl-DBPs generation prior to chlorination disinfection process, and ensure the safety of subsequential disposal for wastewater sludge.


Subject(s)
COVID-19 , Disinfectants , Water Pollutants, Chemical , Water Purification , Disinfectants/toxicity , Disinfection/methods , Escherichia coli , Extracellular Polymeric Substance Matrix/chemistry , Halogenation , Humans , Lignin , Sewage , Wastewater/analysis , Water Pollutants, Chemical/analysis , Water Purification/methods
14.
Sci Total Environ ; 838(Pt 3): 156193, 2022 Sep 10.
Article in English | MEDLINE | ID: covidwho-1852053

ABSTRACT

During the COVID-19 pandemic, the use of chlorine-based disinfectants has surged due to their excellent performance and cost-effectiveness in intercepting the spread of the virus and bacteria in water and air. Many authorities have demanded strict chlorine dosage for disinfection to ensure sufficient chlorine residual for inactivating viruses and bacteria while not posing harmful effects to humans as well as the environment. Reliable chlorine sensing techniques have therefore become the keys to ensure a balance between chlorine disinfection efficiency and disinfection safety. Up to now, there is still a lack of comprehensive review that collates and appraises the recently available techniques from a practical point of view. In this work, we intend to present a detailed overview of the recent advances in monitoring chlorine in both dissolved and gaseous forms aiming to present valuable information in terms of method accuracy, sensitivity, stability, reliability, and applicability, which in turn guides future sensor development. Data on the analytical performance of different techniques and environmental impacts associated with the dominated chemical-based techniques are thus discussed. Finally, this study concludes with highlights of gaps in knowledge and trends for future chlorine sensing development. Due to the increasing use of chlorine in disinfection and chemical synthesis, we believe the information present in this review is a relevant and timely resource for the water treatment industry, healthcare sector, and environmental organizations.


Subject(s)
COVID-19 , Disinfectants , Water Purification , Bacteria , COVID-19/epidemiology , Chlorides , Chlorine , Disinfection/methods , Halogenation , Humans , Pandemics , Reproducibility of Results , Water Purification/methods
15.
Chemosphere ; 302: 134775, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1821179

ABSTRACT

Various emerging organic micropollutants, such as pharmaceuticals, have attracted the interest of the water industry during the last two decades due to their insufficient removal during conventional water and wastewater treatment methods and increasing demand for pharmaceuticals projected to climate change-related impacts and COVID-19, nanosorbents such as carbon nanotubes (CNTs), graphene oxides (GOs), and metallic organic frameworks (MOFs) have recently been extensively explored regarding their potential environmental applications. Due to their unique physicochemical features, the use of these nanoadsorbents for organic micropollutans in water and wastewater treatment processes has been a rapidly growing topic of research in recent literature. Adsorptive membranes, which include these nanosorbents, combine the benefits of adsorption with membrane separation, allowing for high flow rates and faster adsorption/desorption rates, and have received a lot of publicity in recent years. The most recent advances in the fabrication of adsorptive membranes (including homogeneous membranes, mixed matrix membranes, and composite membranes), as well as their basic principles and applications in water and wastewater treatment, are discussed in this review. This paper covers ten years, from 2011 to 2021, and examines over 100 published studies, highlighting that micropollutans can pose a serious threat to surface water environments and that adsorptive membranes are promising, particularly in the adsorption of trace substances with fast kinetics. Membrane fouling, on the other hand, should be given more attention in future studies due to the high costs and restricted reusability.


Subject(s)
COVID-19 , Nanotubes, Carbon , Water Pollutants, Chemical , Water Purification , Adsorption , Humans , Pharmaceutical Preparations , Water , Water Pollutants, Chemical/analysis , Water Purification/methods
16.
J Am Chem Soc ; 143(31): 12194-12201, 2021 08 11.
Article in English | MEDLINE | ID: covidwho-1320215

ABSTRACT

The coronavirus SARS-CoV-2 can survive in wastewater for several days with a potential risk of waterborne human transmission, hence posing challenges in containing the virus and reducing its spread. Herein, we report on an active biohybrid microrobot system that offers highly efficient capture and removal of target virus from various aquatic media. The algae-based microrobot is fabricated by using click chemistry to functionalize microalgae with angiotensin-converting enzyme 2 (ACE2) receptor against the SARS-CoV-2 spike protein. The resulting ACE2-algae-robot displays fast (>100 µm/s) and long-lasting (>24 h) self-propulsion in diverse aquatic media including drinking water and river water, obviating the need for external fuels. Such movement of the ACE2-algae-robot offers effective "on-the-fly" removal of SARS-CoV-2 spike proteins and SARS-CoV-2 pseudovirus. Specifically, the active biohybrid microrobot results in 95% removal of viral spike protein and 89% removal of pseudovirus, significantly exceeding the control groups such as static ACE2-algae and bare algae. These results suggest considerable promise of biologically functionalized algae toward the removal of viruses and other environmental threats from wastewater.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Biotechnology/methods , Microalgae/chemistry , SARS-CoV-2/isolation & purification , Wastewater/virology , Water Purification/methods , Angiotensin-Converting Enzyme 2/metabolism , Biotechnology/instrumentation , Cell Line , Click Chemistry , Humans , Receptors, Virus/chemistry , Receptors, Virus/metabolism , SARS-CoV-2/metabolism , Water Purification/instrumentation
17.
Risk Anal ; 41(5): 745-760, 2021 05.
Article in English | MEDLINE | ID: covidwho-1301543

ABSTRACT

In the U.S., spray irrigation is the most common method used in agriculture and supplementing with animal wastewater has the potential to reduce water demands. However, this could expose individuals to respiratory pathogens such as Legionella pneumophila and nontuberculosis Mycobacteria (NTM). Disinfection with methods like anaerobic digestion is an option but can increase concentrations of cytotoxic ammonia (personal communication). Our study aimed to model the annual risks of infection from these bacterial pathogens and the air concentrations of ammonia and determine if anaerobically digesting this wastewater is a safe option. Air dispersion modeling, conducted in AERMOD, generated air concentrations of water during the irrigation season (May-September) for the years 2013-2018. These values fed into the quantitative microbial risk assessments for the bacteria and allowed calculation of ammonia air concentrations. The outputs of these models were compared to the safety thresholds of 10-4 infections/year and 0.5 mg/m3 , respectively, to determine their potential for negative health outcomes. It was determined that infection from NTM was not a concern for individuals near active spray irrigators, but that infection with L. pneumophila could be a concern, with a maximum predicted annual risk of infection of 3.5 × 10-3 infections/year and 25.2% of parameter combinations exceeding the established threshold. Ammonia posed a minor risk, with 1.5% of parameter combinations surpassing the risk threshold of 0.5 mg/m3 . These findings suggest that animal wastewater should be anaerobically digested prior to use in irrigation to remove harmful pathogens.


Subject(s)
Risk Assessment/methods , Waste Disposal, Fluid/methods , Wastewater , Water Purification/methods , Aerosols , Agricultural Irrigation/methods , Agriculture/methods , Air , Air Movements , Ammonia/chemistry , Animals , Legionella pneumophila , Legionnaires' Disease/microbiology , Manure , Microfluidics , Mycobacterium/metabolism , Probability , Risk , Swine , Water
18.
J Hazard Mater ; 404(Pt B): 124082, 2021 02 15.
Article in English | MEDLINE | ID: covidwho-813688

ABSTRACT

Heterogeneous Fenton catalysts are emerging as excellent materials for applications related to water purification. In this review, recent trends in the synthesis and application of heterogeneous Fenton catalysts for the abatement of organic pollutants and disinfection of microorganisms are discussed. It is noted that as the complexity of cell wall increases, the resistance level towards various disinfectants increases and it requires either harsh conditions or longer exposure time for the complete disinfection. In case of viruses, enveloped viruses (e.g. SARS-CoV-2) are found to be more susceptible to disinfectants than the non-enveloped viruses. The introduction of plasmonic materials with the Fenton catalysts broadens the visible light absorption efficiency of the hybrid material, and incorporation of semiconductor material improves the rate of regeneration of Fe(II) from Fe(III). A special emphasis is given to the use of Fenton catalysts for antibacterial applications. Composite materials of magnetite and ferrites remain a champion in this area because of their easy separation and reuse, owing to their magnetic properties. Iron minerals supported on clay materials, perovskites, carbon materials, zeolites and metal-organic frameworks (MOFs) dramatically increase the catalytic degradation rate of contaminants by providing high surface area, good mechanical stability, and improved electron transfer. Moreover, insights to the zero-valent iron and its capacity to remove a wide range of organic pollutants, heavy metals and bacterial contamination are also discussed. Real world applications and the role of natural organic matter are summarised. Parameter optimisation (e.g. light source, dosage of catalyst, concentration of H2O2 etc.), sustainable models for the reusability or recyclability of the catalyst and the theoretical understanding and mechanistic aspects of the photo-Fenton process are also explained. Additionally, this review summarises the opportunities and future directions of research in the heterogeneous Fenton catalysis.


Subject(s)
Hydrogen Peroxide/chemistry , Iron/chemistry , Light , Wastewater , Water Pollutants, Chemical/analysis , Water Purification/methods , Catalysis , Disinfection , Humic Substances/analysis , Metal-Organic Frameworks/chemistry , Minerals/chemistry , Oxidation-Reduction , Photochemistry , Reactive Oxygen Species/chemistry , Wastewater/chemistry , Wastewater/microbiology , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/radiation effects
19.
ACS Chem Neurosci ; 11(19): 2903-2905, 2020 10 07.
Article in English | MEDLINE | ID: covidwho-779925

ABSTRACT

Several lines of evidence suggest the presence of severe acute respiratory coronavirus-2 (SARS-CoV-2) in wastewater. The use of sewage water for irrigation is common in many developing countries, and it is only partially treated in the majority of countries with less than 10% of collected wastewater receiving any form of treatment globally. Wastewater is unsafe for human and animal consumption and contains impurities and microbial pathogens. Here, we pose the question of whether the reuse of untreated or partially treated wastewater for irrigation can expose susceptible populations and pets, leading to COVID-19 disease recurrence in the community? It is imperative to study the ecological relationships between humans, animals, and environmental health in relation to COVID-19 to contribute to a "One Health Concept" to design preventative strategies and attain optimal health for people, animals, and the environment.


Subject(s)
Agricultural Irrigation/methods , Coronavirus Infections/transmission , Pneumonia, Viral/transmission , Wastewater/virology , Animals , Animals, Domestic/virology , Betacoronavirus , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Humans , Pandemics/veterinary , Pneumonia, Viral/epidemiology , Pneumonia, Viral/veterinary , Risk Factors , SARS-CoV-2 , Sewage/virology , Water Purification/methods
20.
ACS Chem Neurosci ; 11(18): 2786-2788, 2020 09 16.
Article in English | MEDLINE | ID: covidwho-765996

ABSTRACT

Herein, we propose the use of novel adsorbents, namely micelle clay complexes comprising the clay montmorillonite, coupled with activated carbon for effective eradication of neuropathogenic microbes such as SARS-CoV-2 and Naegleria fowleri from water supplies for ablution/nasal irrigation. These can be incorporated easily to water collection devices, i.e., taps and water bottles, in the domestic setting. These filters are low cost, easy to install, and ideal disinfection systems. Such strategies are particularly useful for communities who have lack of access to safe water supplies, rely heavily on water storage tanks, or lack adequate water sanitation facilities, especially in developing countries.


Subject(s)
Coronavirus Infections/prevention & control , Filtration/methods , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Water Purification/methods , Bentonite , Betacoronavirus , COVID-19 , Central Nervous System Protozoal Infections/prevention & control , Charcoal , Clay , Filtration/instrumentation , Humans , Naegleria fowleri , Nasal Lavage , SARS-CoV-2 , Water Purification/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL